THE IMPACT OF CKD ON THE OUTCOME OF PRIMARY PCI

Ayman Saleh Professor of Cardiology Ain Shams University

> A thrombotic risk or a bleeding risk ?

- A short term risk ? An intermediate risk ? or a long term risk ?
- > What grade of ckd is at risk?

CKD AND PPCI

Factors involved in the increased risk of thrombosis in patients with renal failure

NDT Nephrology Diałysis Transplantation

© The Author 2013. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

FACTORS INVOLVED IN THE INCREASED RISK OF BLEEDING IN PATIENTS WITH RENAL FAILURE

Effect of P2Y12 receptor antagonists stratified by creatinine clearance.

	Hazard Ratio for Efficacy (95% Cl)	Total No. of Patients	Primar Comp	y Endpoint arator-Ref (%)	Reduction in Risk (%)
Clopidogrel					
റ_<60 mL/min		# 999	17.8	13.1	+44
码_60-90 mL/min _		672	10.3	12.8	-20
○ >90 mL/min #=	—	331	4.4	10.4	-58*
<64 mL/min		4087	13.4	14.9	-11
64-81.2 mL/min		4075	7.5	10.8	-32*
≥81.2 mL/min		4091	6.6	8.8	-26*
Prasugrel					
		1490	15.1	17.5	-14
ସୁ ≥60 mL/min	-#-	11,890	9.0	11.1	-20*
Ticagrelor					
<60 mL/min		3237	17.3	22.0	-23*
ר ≥60 mL/min		11,965	7.9	8.9	-10
d <60 mL/min [†]		2562	16.4	22.4	-29*
≥60 mL/min [†]	-₩-	12,640	8.5	9.6	-10
MDRD Estimation. 0.5	0.6 0.7 0.8 0.9 1.0 1.2				
← P2Y	2 Inhibitor Better Placebo B	Better →			

Capodanno D , and Angiolillo D J Circulation.

Fixed (non-modifiable) risk factors	Modifiable risk factors
Older age	Volume of CM
Diabetes mellitus	Hypotension
Pre-existing renal failure	Anemia and blood loss
Advanced CHF	Dehydration
Low LVEF	Low serum albumin level (<35 g/l)
Acute myocardial infarction	ACE inhibitors
Cardiogenic shock	Diuretics
Renal transplant	Non-steroidal anti-inflammatory drugs
	Nephrotoxic antibiotics
	IABP

RISK FACTORS FOR THE DEVELOPMENT OF CIN

	Contrast-Induced Nephropathy (n=86)	No Contrast-Induced Nephropathy (n=1798)	Relative Risk (95% Cl)	Ρ
30-Day mortality, %	16.2	1.2	13.8 (7.3,26.2)	< 0.0001
1-Year mortality, %	23.3	3.2	7.4 (4.7,11.7)	< 0.0001

MORTALITY RATES STRATIFIED BY THE DEVELOPMENT OF CONTRAST-INDUCED NEPHROPATHY

THE SHORT AND INTERMEDIATE TERM IMPACT OF RENAL DYSFUNCTION IN PATIENTS WITH ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION TREATED WITH PRIMARY PERCUTANEOUS CORONARY INTERVENTION

Omar Salah Awad, MD, M.Ayman A. Saleh, MD, Ghada Selim, MD, Haitham Galal Mohamed, MD, Tarek Rashid Mohamed, MD, Khaled Aly, MD

Table (1): Baseline characteristics and risk factors

	Crcl≥90ml/min	Crcl<90ml/min	P-value
Age	53.22±10	58.95±11.2	<0.0001
Male	80.3%	67.6%	<0.022
Hypertension	34.9%	43.1%	<0.184
Diabetes	29.6%	43.1%	<0.026
Dyslipidemia	25.5%	17.1%	<0.104
Current smoking	60.5%	56.9%	<0.793
Family history	4.9%	13.2%	<0.03
PVD	15.8%	22.5%	<0.174
Previous CVS	5.3%	16.7%	<0.003
Previous ACS	3.9%	2.9%	<0.671

bie (z). Chine a status al presentation and seron creatinine				
Systolic BP	120.98±21.7	116.56±29.73	<0.173	
Diastolic BP	74.73±12.7	70.63±16.52	<mark><0.027</mark>	
Heart rate	83.82±15.22	87.96±19.66	<0.6	
Killip class				
Class 1	92.1%	80.4%		
Class 2	2.6%	7.8%		
Class 3	1.3%	2%		
Class 4	3.9%	9.8%	<u>0.047</u>	
Heart block	3.9%	7.8%	<0.182	
serum Cr	0.924±0.178	1.53±0.66	<mark><0.0001</mark>	
eCrCl	114.53±26.57	58.15±17.51	<mark><0.0001</mark>	

Table (2): Clinical status at presentation and serum creatinine

	Crcl≥90ml/min	Crcl<90ml/min	P-value
Pain to door	7.13±5.8	8.52±6.90	<0.171
Door to balloon	36.54±5.8	38.43±12.78	<0.275
Contrast volume used in ml	172.36±50.81	168.23±50.78	<0.525
Culprit vessel(LAD)	71.7%	63.7%	<0.596
Thrombus grade			
Grade 5:	36.2%	50%	
Grade 4:	44.7%	36.3%	
Grade 3:	15.8%	8.8%	<0.126
Grade 2:	2.6%	3.9%	
Grade 1:	none	1%	
Grade U:	0.7%.	none	
	89.5%	88.2%	
TIMI I	8.6%	6.9%	<0.388
TIMI II	2%	4.9%	
MBG post-procedural MBG 0	0.477	0.077	
MBG 1	2.6%	8.8%	<0.012
MBG2	20.4%	32.4%	<u><0.012</u>
MBG3	16.0%	47.1%	
Multi-vessel affection	32.2%	59.8%	<0.0001
Thrombus aspiration	25%	37.3%	<0.36
Clearway balloon	0.7%	1%	<0.64
Balloon pre-dilation	52.6%	63.7%	<0.8
IC drugs			
GPI	19.7%	27.5%	<0.245
Adrenaline	0.7%	0%	~0.265
None	79.6%	72.5%	
Stent type			
BMS	97.2%	100%	-0.151
DES Stort longth	2.8%	0%	<0.151
	22.07±7.12	24±0.13	<0.103
	5.27±0.55	3.26±0.33	<0.465
Multi-vessel intervention VS culprit only	1.3%	6.9%	<0.24
Thrombotic complications	12.9%	31.4%	<mark><0.0001</mark>
CIN	2.0%	7.8%	<mark><0.027</mark>
Hospital stay duration	3.065±0.7	3.81±1.216	<mark><0.0001</mark>
Heart failure	5.3%	13.7%	<mark><0.019</mark>
Ejection fraction	46.16±11.48%	39.71±10.29%	<0.0001

Thrombotic complications	12.9%	31.4%	<mark><0.0001</mark>
CIN	2.0%	7.8%	<mark><0.027</mark>
Hospital stay duration	3.065±0.7	3.81±1.216	<mark><0.0001</mark>
Heart failure	5.3%	13.7%	<mark><0.019</mark>
Ejection fraction	46.16±11.48%	39.71±10.29%	<mark><0.0001</mark>

Table (4): Event rates in both groups (Primary endpoints)

	Crcl≥90ml/min	Crcl<90ml/min	P-value
Primary end points:			
<u>Death</u>			
a) In hospital			
b) at 30 days	3.3%	10.8%	<mark><0.017</mark>
c) at 6 months	0%	1.1%	<0.382
	1.4%	2.2%	<0.49
<u>Non fatal MI</u>			
a)In hospital	1.3%	1.1%t	<0.675
b) at 30 days	None	None	
c) at 6 months	1.4%	5.7%	<0.073

<u>TVR</u> a)In hospital b) at 30 days c) at 6 months	0.7% None 2.1%	5.4% None 1.1%	<0.033 <0.514
<u>CVS</u> a)In hospital b)at 30 days c)at 6 months	None 0.7% none	None 1.1% 5.7%	<0.616 <mark><0.007</mark>
<u>Major bleeding</u> a)In hospital b)at 30 days c) at 6 months	0.7% None 1.4%	3.2% None 3.4%	<0.164 <0.278
<u>Composite endpoints</u> a)In hospital b)at 30 days c)at 6 months	5.9% 0.7% 6.1%	19.6% 2.2% 17.8%	<mark><0.0007</mark> <0.55 <mark><0.0045</mark>

Composite In-hospital MACE including mortality

Figure: Column chart comparing composite in-hospital primary end points

Composite at 6 months MACE including mortality

end points

Figure 4: In-hospital death percentage within each class

Determinants of admission renal dysfunction and Odds Ratios after multivariable adjustment

Variable	OR	95%CI	p-value
Female gender	1.65	1.20-2.25	0.002
Age (/year)	1.07	1.05-1.08	<0.001
Weight < 67 k a	0.87	0.61-1.23	0.87
CAD ^(a)	1.35	1.00-1.82	0.05
PAD ^(b)	1.89	1.26-2.84	0.002
AHT (c)	1.10	0.84-1.43	0.49
DM (dcp	0.97	0.69-1.36	0.87

Gevaert et al. BMC Nephrology 2013 **14**:62 doi:10.1186/1471-2369-14-62

IMPACT OF RENAL INSUFFICIENCY IN PATIENTS UNDERGOING PRIMARY ANGIOPLASTY FOR ACUTE MYOCARDIAL INFARCTION

- > H. Mehrdad Sadeghi, MD; Gregg W. Stone, MD; Cindy L. Grines, MD; Roxana Mehran, MD;
- Simon R. Dixon, MBChB; Alexandra J. Lansky, MD; Martin Fahy, MSc; David A. Cox, MD;
- Eulogio Garcia, MD; James E. Tcheng, MD; John J. Griffin, MD; Thomas D. Stuckey, M
- Mark Turco, MD; John D. Carroll, MD

	CrCl ≤60 mL/min (n=350)	CrCl >60 mL/min (n=1583)	Relative Risk (95% Cl)	Р
30-Day adverse events				
Death, %	7.5	0.8	9.0 (4.7, 17.4)	< 0.0001
Cardiovascular	4.9	0.6	7.7 (3.6, 16.7)	< 0.0001
Sudden or arrhythmic	1.1	0.2		
Myocardial infarction	0.6	0.1		
Heart failure	0.9	0.1		
Stroke	0.3	0		
Unclassified/unknown	2.0	0.2		
Noncardiovascular	2.7	0.1	20.9 (4.6, 95.1)	< 0.0001
Reinfarction, %	0.9	0.8	1.1 (0.3, 3.7)	NS
Target vessel revascularization, %	3.0	3.8	0.8 (0.4, 1.5)	NS
Disabling stroke, %	0.3	0.1	2.4 (0.2, 24.8)	NS
Composite events, %	10.9	4.8	2.3 (1.6, 3.3)	< 0.0001
Moderate/severe bleeding, %	6.7	2.8	2.4 (1.5, 3.9)	0.0003
Transfusion, %	8.9	3.6	2.5 (1.6, 3.8)	< 0.0001
Thrombocytopenia, %	3.7	3.2	1.2 (0.6, 2.1)	NS
Subacute thrombosis, %	0.9	1.0	0.9 (0.3, 2.9)	NS
Contrast-induced nephropathy, %	9.7	3.4	2.8 (1.8, 4.3)	< 0.0001
1-Year adverse events				
Death, %	12.7	2.4	5.3 (3.5, 8.1)	< 0.0001
Cardiovascular	7.3	1.2	6.0 (3.4, 10.7)	< 0.0001
Sudden or arrhythmic	2.7	0.7		
Myocardial infarction	1.2	0.1		
Heart failure	0.9	0.1		
Stroke	0.3	0		
Unclassified/unknown	2.2	0.3		
Noncardiovascular	3.9	0.9	4.3 (2.1, 8.8)	< 0.0001
Reinfarction, %	2.8	2.2	1.3 (0.6, 2.6)	NS
Target vessel revascularization, %	12.7	13.8	0.9 (0.7, 1.2)	NS
Disabling stroke, %	0.9	0.4	2.4 (0.6, 9.1)	NS
Composite events, %	24.5	16.3	1.5 (1.2, 1.9)	0.0001

CLINICAL OUTCOMES STRATIFIED BY BASELINE CRCL

Multivariate predictors of mortality at 30 days (left) and 1 year (right) after primary PCI for AMI.

Incidence of restenosis and infarct artery reocclusion after primary PCI for AMI in 584 patients undergoing routine angiographic follow-up at 7 months, stratified by presence or absence of baseline RI. RI defined by CrCl 60 mL/min.

ONE YEAR KAPLAN MEIER SURVIVAL CURVE STRATIFIED BY CRCL LEVELS.

From: Long-Term Impact of Chronic Kidney Disease in Patients With ST-Segment Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention: The HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) Trial

J Am Coll Cardiol Intv. 2011;4(9):1011-1019. doi:10.1016/j.jcin.2011.06.012

Figure Legend:

Patient Distribution in the HORIZONS-AMI Trial

Patient distribution in the HORIZONS-AMI trial according to the availability of baseline creatinine clearance data and randomization. CrCl = creatinine clearance; STEMI = ST-segment elevation my ocardial infarction.

From: Long-Term Impact of Chronic Kidney Disease in Patients With ST-Segment Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention: The HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) Trial

J Am Coll Cardiol Intv. 2011;4(9):1011-1019. doi:10.1016/j.jcin.2011.06.012

Figure Legend:

Time-to-Event Curves Stratified by the Presence or Absence of CKD

Time-to-event curves stratified by the presence or absence of chronic kidney disease (CKD) for (A) net adverse cardiac events; (B) all-cause mortality; (C) non-coronary artery bypass grafting (CABG) major bleeding; and (D) major adverse cardiovascular events. CI = confidence interval; CrCI = creatinine clearance; HR = hazard ratio.

TAKE HOME MESSAGE

- > 1. CKD is a major predictor of mortality after PPCI for STEMI.
- 2.This mortality risk continues in hospital , at 30 days , 6 months , one year and thereafter .
- S. CKD is associated with worse MB, more in hospital both thrombotic and bleeding complications.
- > 4. CKD is also associated with TVR , TLR .
- 5. Moreover , CKD is associated with increased incidence of CVS in the 6 months following PPCI.

TAKE HOME MESSAGE

- 6. The risk posed by CKD on PPCI outcome demonstrates a gradient starting with the minimal degree of renal impairment.
- > 7. PPCI remains the revascularization of choice for CKD patients with STEMI . But more care is needed for every detail of such patients .

THANK YOU