

STEMI – Primary Percutaneous Coronary Intervention

Abdul Razek Maaty, MD Professor of Medicine

- Primary PCI
- Aspiration, manual thrombectomy and distal protection devices
- Choice of stent
- Pharmacothaerpy, including IC GP IIb/IIIa inhibitors

Decline in Deaths from Cardiovascular Disease in Relation to Scientific Advances

Nabel EG and Braunwald E. 2012;366:54-63

Geoffrey Hartzler, M.D. First Primary Angioplasty in AMI, 1979

1946 - 2012

The Goal of Primary PCI in STEMI

•Restore flow in the culprit artery and optimize myocardial perfusion (by angio and EKG criteria)

- •Preserve LV function.
- •Reduce MI complications
- •Reduce mortality.

Prehospital and In-Hospital Management and Reperfusion Strategies

Cath = catheterization laboratory; EMS = emergency medical system; FMC = first medical contact; PCI = percutaneous coronary intervention; STEMI = ST-segment elevation myocardial infarction

ESC STEMI Guidelines 2012

Primary PCI versus Thrombolytics Swedish Heart Intensive Care Registry (RIKS-HIA)

Stenestrand, U. et al. JAMA 2006;296:1749-1756

McNamara J Am Coll Cardiol 2006;47:2180-2186

Impact of Delay to Primary PCI

90 DAY MORTALITY RELATED TO DOOR-TO-BALLOON TIME

Hudson MP et al. Circ Cardiovasc Qual Outcomes 2011;4:183-92

Do whatever it takes to reduce time from symptom onset to ER arrival and time from ER arrival to PCI!

↑ Public awareness of MI Sx Chest pain centers of excellence with lower DBTs and excellent outcomes **Regional coordination** Ambulance ECG telemetry Ambulance/ER CCL activation ICs sleep in hospital **Continual QI**

ESC STEMI guidelines 2012

Primary PCI is the recommended reperfusion therapy over fibrinolysis if performed by an experienced team within 120 min of FMC.	1	A
Primary PCI-capable centres must deliver a 24/7 service and be able to start primary PCI as soon as possible but always within 60 min from the initial call.	1	В
All hospitals and EMSs participating in the care of patients with STEMI must record and monitor delay times and work to achieve and maintain the following quality targets: • first medical contact to first ECG ≤10 min; • first medical contact to reperfusion therapy; • for fibrinolysis ≤30 min; • for primary PCI ≤90 min (≤60 min if the patient presents within 120 min of symptom onset or directly to a PCI- capable hospital).		В

AHA/ACC GL - Primary PCI of the Infarct Artery

Primary PCI should be performed in patients within 12 hours of onset of STEMI.

B

Primary PCI should be performed in patients with STEMI presenting to a hospital with PCI capability within 90 minutes of first medical contact as a systems goal.

B allbill

Primary PCI should be performed in patients with STEMI who develop severe CHF or cardiogenic shock and are suitable candidates for revascularization as soon as possible, irrespective of time delay

Survival Benefits in Patients Undergoing Late PCI of the Infarct-Related Artery

Abbate et al. J Am Coll Cardiol, 2008: 51:956-964

OAT: The Occluded Artery Trial Adverse events at 4 Years

Hochman JS et al. NEJM 2006;355:2395-407

ACC/AHA GL - Primary PCI for STEMI Late Presentations

It is reasonable to perform primary PCI for patients with onset of symptoms within the prior 12-24 hours and ≥ 1 of the following

a. Severe CHF

Illalibili

 $\left(\begin{array}{c} c \\ c \end{array} \right)$

c. Persistent ischemic symptoms

Mortality and complications are higher in patients presenting late PCI is more challenging - Higher rate of no reflow, Organized thrombus

Door-to-Balloon Time and Mortality among Patients Undergoing Primary PCI

Daniel S. Menees, M.D., Eric D. Peterson, M.D., Yongfei Wang, M.S., Jeptha P. Curtis, M.D., John C. Messenger, M.D., John S. Rumsfeld, M.D., Ph.D., and Hitinder S. Gurm, M.B., B.S.

96738 patients with STEMI undergoing PCI 2005-9 participating in the Cath-PCI registry

Menees et al, NEJM 2013

Markers of myocardial perfusion - ST Resolution and Myocardial Blush in STEMI

Sub-Analysis of the CADILLAC Trial (N=456)

Sorajja P. et al Eur Heart J 2005

Impact of Macroscopic Distal Emboli

DE occurred in 27 of 178 (15%) pts after primary PTCA ⇒ ↓ ST res ↑ Infarct size ↑ Mortality PLCX filling defect at primary PCI site

Distal thromboemboli

Henriques JPS et al. EHJ 2002;23:1112-7

Mechanical Approaches to Thrombus

Thrombus aspiration (Rinspirator, Pronto, Export, Rescue. Eliminate. etc.)

Thrombectomy (AngioJet, X-Sizer)

ardWire, FilterWire, AngioGuard, etc.)

FilterWire, An

Manual thrombectomy and distal embolic protection devices : Myocardial Blush

Meta-analysis of 15 STEMI studies

De Luca G. et al Am Heart J 2007

Manual thrombectomy and distal embolic protection devices : 30 day mortality

Meta-analysis of 18 STEMI studies

De Luca G. et al Am Heart J 2007

THROMBUS ASPIRATION

TAPAS Study overview

Randomized, Open Label, Single Center Trial

Svilaas T et al. N Engl J Med 2008

TAPAS study

Blush score

ST Resolution @60 min

Svilaas T et al. N Engl J Med 2008

TAPAS Study: Clinical Events

Sig. reduction of cardiac death or non-fatal MI in Aspiration Group at 1 year

. Vlaar et al (TAPAS): a 1-year follow-up study, Lancet 2008; 371: 2008; 1915-20

TAPAS Study: Clinical Events

Mortality

Svilaas T et al. N Engl J Med 2008 Vlaar PG et al. Lancet 2008

INFUSE-AMI Trial

452 pts with anterior STEMI Anticipated Sx to PCI <5 hrs, TIMI 0-2 flow in prox or mid LAD Primary PCI with bivalirudin anticoagulation

Infuse-AMI, Stone G et al, JAMA 2012

INFUSE-AMI: Reperfusion post-PCI*

Infuse-AMI, Stone G et al, JAMA 2012

INFUSE-AMI: STR 60 minutes post-PCI*

*Core laboratory assessed

Infuse-AMI, Stone G et al, JAMA 2012

INFUSE-AMI: Infarct size at 30 days* - Major secondary endpoint -

*Core laboratory assessed. No interaction was present between the 2 randomization groups for the primary 30-day infarct size endpoint (p=0.46)

INFUSE-AMI: Infarct size at 30 days Effect of IC abciximab via Clearway RX

*Core laboratory assessed

Stone GW et al. JAMA 2012;307:0n-line

Updated aspiration meta-analysis

- Aspiration thrombectomy vs. conventional PPCI (18 trials, n=3,936):
- ST-segment resolution at 60 minutes (RR=1.31; 95% CI 1.16-1.48; p<0.0001) and TIMI blush grade 3 post-PCI (RR=1.37; 95% CI 1.19-1.59; p<0.0001) were both improved by aspiration
- MACE: RR = 0.76; 95% CI 0.63-0.92; p=0.006 with aspiration
- All-cause mortality (RR=0.71, 95% CI 0.51-0.99; p=0.049) significantly reduced with aspiration
- Final infarct size (p=0.64) and ejection fraction (p=0.32) at 1 month were similar.

Kumbbani DJ et al JACC 2013

TASTE Trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Thrombus Aspiration during ST-Segment Elevation Myocardial Infarction

Ole Fröbert, M.D., Ph.D., Bo Lagerqvist, M.D., Ph.D., Göran K. Olivecrona, M.D., Ph.D., Elmir Omerovic, M.D., Ph.D., Thorarinn Gudnason, M.D., Ph.D.,
Michael Maeng, M.D., Ph.D., Mikael Aasa, M.D., Ph.D., Oskar Angerås, M.D., Fredrik Calais, M.D., Mikael Danielewicz, M.D., David Erlinge, M.D., Ph.D., Lars Hellsten, M.D., Ulf Jensen, M.D., Ph.D., Agneta C. Johansson, M.D., Amra Kåregren, M.D., Johan Nilsson, M.D., Ph.D., Lotta Robertson, M.D., Lennart Sandhall, M.D., Iwar Sjögren, M.D., Ollie Östlund, Ph.D., Jan Harnek, M.D., Ph.D., and Stefan K. James, M.D., Ph.D.

TASTE Trial

- 7244 pts with STEMI undergoing PCI were randomly assigned to manual thrombus aspiration + PCI or PCI only (as part of the SCAAR registry)
- No differences in 30 day mortality (primary endpoint), trends for less rehospitalization for Re-MI (p=0.09) and for less stent thrombosis (p=0.06) with aspiration

NEJM 2013

2012 STEMI ESC Guidelines

Recommendations	Class ^a	Level ^b	Ref ^c	
Indications for primary PCI				
Primary PCI is the recommended reperfusion therapy over fibrinolysis if performed by an experienced team within 120 min of FMC.	I.	A	69, 99	
Primary PCI is indicated for patients with severe acute heart failure or cardiogenic shock, unless the expected PCI related delay is excessive and the patient presents early after symptom onset.	I.	В	100	
Procedural aspects of primary PCI				
Stenting is recommended (over balloon angioplasty alone) for primary PCI.	1	Α	101, 102	
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.	lla	В	75, 103– 105	
If performed by an experienced radial operator, radial access should be preferred over femoral access.	lla	В	78, 79	
If the patient has no contraindications to prolonged DAPT (indication for oral anticoagulation, or estimated high long- term bleeding risk) and is likely to be compliant, DES should be preferred over BMS.	lla	A	80, 82, 106, 107	
Routine thrombus aspiration should be considered.	lla	> B	83-85	
Routine use of distal protection devices is not recommended.	Ш	С	86, 108	
Routine use of IABP (in patients without shock) is not recommended.	Ш	Α	97, 98	
2011 STEMI Update Thrombus Aspiration During PCI for STEMI

NEW Recommendation

Aspiration thrombectomy is reasonable for patients undergoing primary PCI

> Kushner et al. Circulation. 2009;120:2271–2306

CHOICE OF STENT

Long-term (3-5 year) FU after DES vs. BMS in AMI TVR (N=6,026 pts)

<u>TVR</u>	DES	BMS	OR [95%CI]	Р
DEDICATION	8.9%	19.8%	0.40 [0.25, 0.64]	< 0.01
PASEO	6.1%	21.1%	0.24 [0.11, 0.54]	< 0.01
STRATEGY	10.3%	26.1%	0.33 [0.14, 0.75]	0.01
SESAMI	8.3%	16.0%	0.46 [0.23, 0.92]	0.03
MISSION	8.9%	15.8%	0.54 [0.27, 1.09	0.09
TYPHOON	11.9%	21.5%	0.49 [0.30, 0.80]	<0.01
PASSION	7.7%	10.5%	0.73 [0.42, 1.26]	0.26
HORIZONS-AMI	12.5%	17.7%	0.67 [0.53-0.84]	0.001
META-ANALYSIS			0.50 [0.40-0.64]	<0.001

Adapted from Ziada KM et al. JACC CI Int 2011;4;39-41

Long-term (3-5 year) FU after DES vs. BMS in AMI Stent thrombosis (N=6,026 pts)

<u>Stent thrombosis</u>	DES	BMS	OR [95%CI]	Р
DEDICATION	2.9%	3.2%	0.90 [0.36, 2.24]	0.82
PASEO	1.1%	2.2%	0.49 [0.07, 3.57]	0.48
STRATEGY	6.9%	7.9%	0.86 [0.28, 2.66]	0.79
SESAMI	5.1%	5.1%	1.00 [0.37, 2.73]	1.00
MISSION	3.1%	2.0%	1.69 [0.40, 7.20]	0.48
TYPHOON	5.3%	5.5%	0.90 [0.42, 2.00]	0.83
PASSION	4.2%	3.4%	1.19 [0.52, 2.69]	0.68
HORIZONS-AMI	5.1%	4.4%	1.15 [0.77-1.72]	0.50
META-ANALYSIS			1.06 [0.81-1.39]	0.67

Adapted from Ziada KM et al. JACC CI Int 2011;4;39-41

Long-term (3-5 year) FU after DES vs. BMS in AMI Mortality (N=6,026 pts)

<u>DEATH</u>	DES	BMS	OR [95%CI]	Р
DEDICATION	10.5%	6.4%	1.73 [0.97, 3.08]	0.06
PASEO	8.3%	12.2%	0.65 [0.29, 1.49]	0.31
STRATEGY	18.4%	15.9%	1.19 [0.54, 2.62]	0.66
SESAMI	3.2%	5.0%	0.61 [0.20, 1.92]	0.40
MISSION	4.4%	6.6%	0.69 [0.25, 1.85]	0.46
TYPHOON	4.0%	6.6%	0.61 [0.27, 1.36]	0.23
PASSION	8.9%	11.5%	0.75 [0.45, 1.27]	0.29
HORIZONS-AMI	5.6%	6.6%	0.84 [0.60-1.17]	0.33
META-ANALYSIS			0.88 [0.68-1.11]	0.27

Adapted from Ziada KM et al. JACC CI Int 2011;4;39-41

EXAMINATION Trial

1504 pts with STEMI undergoing PCI within 48° (85% primary PCI within 12°) were randomized to Xience V EES vs. Vision BMS

Stent thrombosis (Def/prob) within 1 year

Sabate M. et al, Lancet 2012

Guidelines

ESC - STEMI 2012

If the patient has no contraindications to prolonged DAPT (indication for oral anticoagulation, or estimated high long-	IIa	•
term bleeding risk) and is likely to be compliant, DES should be preferred over BMS.	114	^

AHA/ACC - STEMI 2012

It is reasonable to use a drugeluting stent as an alternative to a bare-metal stent for primary PCI in STEMI

The MGuard Coronary Stent System

- A stent wrapped with ultra-thin (20µm) polymer mesh sleeve.
- The mesh is designed for plaque sealing during stent expansion in order to prevent embolization of athero-thrombotic debris.
- The sleeve expands seamlessly when the stent is deployed, without affecting the structural integrity of the stent.

MASTER TRIAL DESIGN

Primary Endpoint: complete ST-segment resolution at 60-90 min Secondary endpoints: TIMI flow, Myocardial Blush Grade, MACE (30d, 6m, 12m) Substudies: Cardiac MRI at 3-5 days (2x30 patients) Angiographic follow-up at 13 months (50 patients)

Stone G et al, JACC 2012

TIMI FLOW

Stone et. al, JAm Coll Cardiol. 2012;60:1975-1984. TIMI flow

ST SEGMENT RESOLUTION

Stone et. al, JAm Coll Cardiol. 2012;60:1975-1984.

30 DAYS CLINICAL RESULTS

	MGUARD	CONTROL BMS / DFS	P
	(N=217)	(N=216)	I
MACE	4 (1.8%)	5 (2.3%)	0.75
All cause mortality	0 (0.0%)	4 (1.9%)	0.06
Cardiac death	0 (0.0%)	4 (1.9%)	0.06
Reinfarction	3 (1.4%)	2 (0.9%)	1.00
TLR, ischemia-driven	4 (1.8%)	1 (0.5%)	0.37
TVR, ischemia-driven	5 (2.3%)	1 (0.5%)	0.10
Stent Thrombosis			
Definite or Probable	3 (1.4%)	2 (0.9%)	0.67
Definite	3 (1.4%)	1 (0.5%)	0.62
Stroke	1 (0.5%)	0 (0.0%)	1.00
TIMI Bleeding			
Major or Minor	4 (1.9%)	4 (1.9%)	0.75
Major	3 (1.4%)	2 (0.9%)	1.00

* Secondary endpoints

Stone et. al, *JAm Coll Cardiol*. 2012;60:1975-1984.

Anti-thrombotic Therapy

TRITON-TIMI 38: STEMI Subgroup Analysis (n=3,534)

Prasugrel
Clopidogrel

No information on markers of perfusion

Montalescot et al, Lancet 2009

TRITON-TIMI 38: STEMI Subgroup Analysis (n=3,534)

Montalescot et al, Lancet 2009

PLATO STEMI – 8,430 patients Primary endpoint: CV death, MI or stroke

Steg G et al, Circulation 2010

PLATO STEMI - All cause mortality

PLATO STEMI - Primary safety event: major bleeding

Steg G et al, Circulation 2010

ESC STEMI Guidelines 2012

Antiplatelet therapy		
Aspirin oral or i.v. (if unable to swallow) is recommended	1	В
An ADP-receptor blocker is recommended in addition to aspirin. Options are:	1	А
 Prasugrel in clopidogrel-naive patients, if no history of prior stroke/TIA, age <75 years. 	1	В
• Ticagrelor.	1	В
 Clopidogrel, preferably when prasugrel or ticagrelor are either not available or contraindicated. 	1	С
GP IIb/IIIa inhibitors should be considered for bailout therapy if there is angiographic evidence of massive thrombus, slow or no-reflow or a thrombotic complication.	lla	С
Routine use of a GP IIb/IIIa inhibitor as an adjunct to primary PCI performed with unfractionated heparin may be considered in patients without contraindications.	IIb	В

Is there still a role for GP IIb/IIIa inhibitors in the era of the new platelet ADP receptor inhibitors ? Abciximab in Primary PCI Meta-analysis 8 RCTs – 3,949 pts with AMI w/i 12° undergoing primary (7) or rescue (1) PCI rand to abciximab vs. placebo or control

De Luca G et al. JAMA 2005;293:1759-1765

Updated meta-analysis of effect of GPIs on <u>30 day mortality</u> in pts with STEMI

	Deat	h			
Study	Gp IIb-IIIa inh <i>nIN</i>	Control n/N	OR (fixed) 95% CI	Weight %	OR (fixed) 95% Cl
ACE ADMIRAL APE ASSIST BRAVE-3 CADILLAC Ernst et al HORIZONS MI ISAR Lee et al ON-TIME 2 Petronio <i>et al.</i> Petronio <i>et al.</i> Petronio <i>et al.</i> Petronio <i>et al.</i> Petronio <i>et al.</i> Petronio <i>et al.</i> Steen <i>et al.</i> Zorman <i>et al.</i> Total (95% CI)	7/200 5/149 3/29 7/201 13/401 20/1052 1/85 56/1802 4/201 1/32 11/473 1/44 0/30 1/17 6/241 1/25 4/112 141/5094	8/200 10/151 3/30 4/199 10/399 24/1030 0/27 38/1800 8/200 0/36 19/477 4/45 3/60 1/14 5/242 1/30 5/51 143/4991		5.46 6.79 1.87 2.75 6.87 16.84 0.52 26.07 5.56 0.32 13.08 2.74 1.64 0.73 3.44 0.62 4.69 100.00	0.87 [0.31, 2.45] 0.49 [0.16, 1.47] 1.04 [0.19, 5.62] 1.76 [0.51, 6.11] 1.30 [0.56, 3.01] 0.81 [0.45, 1.48] 0.98 [0.04, 24.67] 1.49 [0.98, 2.26] 0.49 [0.14, 1.64] 3.48 [0.14, 88.40] 0.57 [0.27, 1.22] 0.24 [0.03, 2.22] 0.27 [0.01, 5.39] 0.81 [0.05, 14.28] 1.21 [0.36, 4.02] 1.21 [0.36, 4.02] 1.21 [0.07, 20.35] 0.34 [0.09, 1.33]
Test for heterogene Test for overall effe	eity: $Chi^2 = 15.62$, df = 16 ct: $Z = 0.31$ ($P = 0.75$)	$(P = 0.48), I^2 = 0\%$			

Favors GPIs

De Luca et al, EHJ 2009

Favors Control

Updated meta-analysis of effect of GP IIb/IIIa inhibitors on <u>30 day re-MI</u>

	reMi		-		
Study	Gp IIb-IIIa inh <i>nIN</i>	Control n/N	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% CI
ACE ADMIRAL ASSIST CADILLAC ERNST HORIZONS MI ISAR Lee et al ON-TIME 2 Petronio <i>et al.</i> Petronio <i>et al.</i> RAPPORT Zorman <i>et al.</i>	1/200 2/149 3/201 8/1052 0/85 32/1802 1/201 0/32 13/473 0/17 0/44 8/241 0/112	9/200 4/151 1/199 9/1030 0/27 32/1800 3/200 0/36 14/477 0/14 1/45 10/242 0/51		10.92 4.78 1.21 11.01 38.35 3.65 16.53 1.79 11.77	0.11 [0.01, 0.85] 0.50 [0.09, 2.77] 3.00 [0.31, 29.09] 0.87 [0.33, 2.26] Not estimable 1.00 [0.61, 1.64] 0.33 [0.03, 3.18] Not estimable 0.93 [0.43, 2.01] Not estimable 0.33 [0.01, 8.41] 0.80 [0.31, 2.05] Not estimable
Total (95% CI) Test for heterogene Test for overall effe	68/4609 hity: Chi² = 6.96, df = 8 (P ct: Z = 1.23 (P = 0.22)	83/4472 = 0.54), /² = 0%	•	100.00	0.82 [0.59, 1.13]
				rs control	

De Luca et al, EHJ 2009

Updated meta-analysis of effect of GP IIb/IIIa inhibitors on <u>major bleeding</u>

	Major bleeding o	omplications			
Study	Treatment n/N	Control n/N	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
ACE ADMIRAL APE ASSIST BRAVE-3 CADILLAC Ernst et al. HORIZONS M ISAR ON-TIME 2 Petronio et al. Petronio et al. Petronio et al. RAPPORT	7/200 1/149 0/29 19/201 7/401 6/1052 8/89 90/1802 7/201 9/473 0/17 0/30 0/43 40/241	6/200 0/151 0/30 11/199 7/399 4/1030 2/30 57/1800 9/200 7/477 0/14 0/60 2/41 23/242		4.77 0.41 8.25 5.68 3.31 2.24 44.66 7.18 5.64 2.08 15.78	1.17 [0.39, 3.55] 3.06 [0.12, 75.73] Not estimable 1.78 [0.83, 3.85] 0.99 [0.35, 2.86] 1.47 [0.41, 5.23] 1.38 [0.28, 6.90] 1.61 [1.15, 2.25] 0.77 [0.28, 2.10] 1.30 [0.48, 3.53] Not estimable Not estimable 0.18 [0.01, 3.90] 1.89 [1.10, 3.28]
Total (95% CI)	194/4928	128/4873	+	100.00	1.50 [1.19, 1.89]
Test for heterogeneit Test for overall effect	y: Chi ² = 5.63, df = 10 (<i>F</i> t: <i>Z</i> = 3.47 (<i>P</i> = 0.0005)	P = 0.85), / ² = 0%			
Total (95% CI)*	104/3126	71/3073	•	100.00	1.41 [1.04, 1.93]
Test for heterogeneit Test for overall effect	y: Chi ² = 5.38, df = 9 (<i>P</i> : t: <i>Z</i> = 2.18 (<i>P</i> = 0.03)	= 0.80), /2 = 0%			
		0.1 0 Favours G	.2 0.5 1 2 5 p llb-llla inh Favour	5 10 s control	

De Luca rt al, EHJ 2009

HORIZONS AMI - 1-Year Major Adverse CV Events 3602 patients with STEMI

*MACE = All cause death, reinfarction, ischemic TVR or stroke

Stone G et al, NEJM 2008, Lancet 2009

HORIZONS - 1-Year Major Bleeding (non-CABG)

Stone G et al, NEJM 2008, Lancet 2009

HORIZONS AMI 1-Year Mortality

Stone G et al, NEJM 2008, Lancet 2009

GPIIb/IIIa's and prasugrel in the TRITON

Similar findings for ticagrelor in the PLATO

O'Donoghue, et al, JACC 2009

RAPID Study

50 paients with STEMI undergoing primary PCI

Parodi et al, JACC 2013

FABULOUS-PRO Study

Valgimigli et al, JACC Card Interv 2012

IC Abciximab During STEMI

IC vs. IV Abciximab in 154 patients with STEMI

CICERO trial IC vs. IV Abciximab in STEMI

Death, re-infarction, CHF, TVR

Thiele et al, Circulation 2008

534 STEMI patients, all underwent thrombus aspiration

Gu et al, Circulation 2010

AIDA STEMI: 2065 pts with STEMI <12° rand to PPCI with IC vs IV bolus abcx (+12° IV abcx in all)

Primary EP @ 90 days	IC Abcx (n=935)	IV Abcx (n=932)	OR (95% CI)	P value
Death, ReMI, or new CHF	65 (7.0%)	71 (7.6%)	0.91 (0.91-1.28)	0.58
- Death	42 (4.5%)	34 (3.6%)	1.24 (0.78-1.97)	0.36
- Cardiac	35	33		
- Non-cardiac	7	1		
- Reinfarction	17 (1.8%)	17 (1.8%)	1.0 (0.51-1.96)	0.99
- New CHF	22 (2.4%)	38 (4.1%)	0.57 (0.33-0.97)	0.04

Thiele H et al. Lancet 2012:

Meta-analysis of IV vs IC Bolus Abciximab (+ 12° Infusion) During Primary PCI in STEMI

6 RCTs, 1246 total pts randomized 30-Day Mortality

Study or Subgroup	Intraco abcix Events	ronary imab N	Intravei abcixi Events	nous mab N	Weight	Odds Ratio M-H, Fixed 95% Cl	Odds Ratio M-H, Fixed 95% Cl
CICERO 2010	5	271	7	263	33.7%	0.69 (0.22, 2.19)
Crystal AMI 2010	0	25	1	23	7.4%	0.29 (0.01, 7.59)
Dominguez-Rodriguez 2009	0	25	0	25		Not estimable	
EASY-MI 2010	0	53	0	52		Not estimable	
Iversen 2011	2	185	9	170	44.8%	0.20 (0.04, 0.92)
Thiele 2008	2	77	3	77	14.1%	0.66 (0.11, 4.05)
Total (95% CI)		636		610	100.0%	0.43 (0.20, 0.94) 🔶
Total events	9	1.4%	20	3.3%			
Heterogeneity: Chi ² =1.88, df=	3 (P=0.60); 1²=0%					0 01 0.1 1 10 100
Test for overall effect: Z=2.11	(P=0.03)						Favors IC Favors IV

Navarese EP et al. Platelets 2011:

INFUSE-AMI: Infarct size at 30 days Effect of IC abciximab via Clearway RX

*Core laboratory assessed

Stone GW et al. JAMA 2012;307:0n-line

Summary

- Optimizing myocardial perfusion during STEMI is challenging.
- Manual thrombus aspiration appeared promising especially from initial studies (TAPAS), but recent studies (INFUSE-MI, TASTE) and registries failed to duplicate the favorable effect
- Embolic protection devices are of doubtful benefit for STEMI PCI
- DES preferred stents; MGuard stent may be beneficial in STEMI PCI but needs to be tested in further clinically powered trials.
- Pharmacotherapy: the new anti-platelet agents clearly have an advantage over clopidogrel in the setting of STEMI primary PCI, all should be given ASAP
- GP IIb/IIIa inhibitors should mainly be given in "bailout" situations, but early administrartion as "bridge" should be studied
- IC GP IIb/IIIa administration appears to have an advantage over IV

Thank you !